Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 180: 114128, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32619426

RESUMO

Back in 1989 some studies have shown that the viral protein Vpr was dispensable for HIV-1 replication in vitro. From then the concept of accessory or auxiliary protein for Vpr has emerged and it is still used to date. However, Vpr soon appeared to be very important for in vivo virus spread and pathogenesis. Vpr has been involved in many biological functions including regulation of reverse transcriptase activity, the nuclear import of the pre-integration complex (PIC), HIV-1 transcription, gene splicing, apoptosis and in cell cycle arrest. Thus, we might rather consider Vpr as a true virulence factor instead of just an accessory factor. At present, Vpr can be regarded as a potential and promising target in different strategies aiming to fight infected cells including latently infected cells.


Assuntos
Polimorfismo Genético , Transcrição Gênica , Fatores de Virulência/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Sequência de Aminoácidos , Apoptose/genética , Ciclo Celular/genética , Progressão da Doença , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Mutagênese Sítio-Dirigida , Linfócitos T/imunologia , Linfócitos T/patologia , Linfócitos T/virologia , Fatores de Virulência/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia
2.
Elife ; 92020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32538781

RESUMO

The HIV-1 Vpr accessory protein induces ubiquitin/proteasome-dependent degradation of many cellular proteins by recruiting them to a cullin4A-DDB1-DCAF1 complex. In so doing, Vpr enhances HIV-1 gene expression and induces (G2/M) cell cycle arrest. However, the identities of Vpr target proteins through which these biological effects are exerted are unknown. We show that a chromosome periphery protein, CCDC137/cPERP-B, is targeted for depletion by HIV-1 Vpr, in a cullin4A-DDB1-DCAF1 dependent manner. CCDC137 depletion caused G2/M cellcycle arrest, while Vpr-resistant CCDC137 mutants conferred resistance to Vpr-induced G2/M arrest. CCDC137 depletion also recapitulated the ability of Vpr to enhance HIV-1 gene expression, particularly in macrophages. Our findings indicate that Vpr promotes cell-cycle arrest and HIV-1 gene expression through depletion of CCDC137.


Like all viruses, the human immunodeficiency virus 1 (HIV-1) cannot replicate on its own; to multiply, it needs to exploit the molecular machinery of a cell. A set of HIV-1 proteins is vital in this hijacking process, and they are required for the virus to make more of itself. However, HIV-1 also carries accessory proteins that are not absolutely necessary for the replication process, but which boost the growth of the virus by deactivating the defences of the infected cells. Amongst these proteins, the role of Viral Protein R (Vpr for short) has been particularly enigmatic. Previous experiments have shown that, in infected cells, Vpr is linked to several biological processes: it tags for destruction a large number of proteins, it causes the cells to stop dividing, and it encourages them to express the genetic information of the virus. How these different processes are connected and triggered by Vpr is still unknown. It particular, it remains unclear which protein is responsible for these changes when it is destroyed by Vpr. To investigate, Zhang and Bieniasz conducted a series of experiments to spot the proteins that interact with Vpr in human cells. This screening process highlighted a protein known as CCDC137, which is depleted in cells infected by HIV-1. To investigate the role of CCDC137, Zhang and Bieniasz decreased the levels of the protein in human cells. This stopped the cells from dividing, just like during HIV-1 infection. Destroying CCDC137 also mimicked the effects of Vpr on HIV-1 gene expression, increasing the levels of virus proteins in infected cells. Finally, Zhang and Bieniasz made a mutant version of CCDC137 that Vpr could not destroy. When infected cells carried this mutant protein, they kept on dividing as normal. Taken together, these results suggest that Vpr works by triggering the destruction of the CCDC137 protein. Overall, this work represents the first step to understand the role of CCDC137 in both infected and healthy cells.


Assuntos
Pontos de Checagem do Ciclo Celular , Regulação Viral da Expressão Gênica/genética , HIV-1/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Western Blotting , Linhagem Celular , Dano ao DNA , HIV-1/fisiologia , Humanos , Imunoprecipitação , Hibridização in Situ Fluorescente , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas Repressoras , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
3.
J Virol ; 94(4)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31776272

RESUMO

The human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr enhances viral replication in both macrophages and, to a lesser extent, cycling T cells. Virion-packaged Vpr is released in target cells shortly after entry, suggesting it is required in the early phase of infection. Previously, we described REAF (RNA-associated early-stage antiviral factor; RPRD2), a constitutively expressed protein that potently restricts HIV replication at or during reverse transcription. Here, we show that a virus without an intact vpr gene is more highly restricted by REAF and, using delivery by virus-like particles (VLPs), that Vpr alone is sufficient for REAF degradation in primary macrophages. REAF is more highly expressed in macrophages than in cycling T cells, and we detected, by coimmunoprecipitation assay, an interaction between Vpr protein and endogenous REAF. Vpr acts quickly during the early phase of replication and induces the degradation of REAF within 30 min of viral entry. Using Vpr F34I and Q65R viral mutants, we show that nuclear localization and interaction with cullin 4A-DBB1 (DCAF1) E3 ubiquitin ligase are required for REAF degradation by Vpr. In response to infection, cells upregulate REAF levels. This response is curtailed in the presence of Vpr. These findings support the hypothesis that Vpr induces the degradation of a factor, REAF, that impedes HIV infection in macrophages.IMPORTANCE For at least 30 years, it has been known that HIV-1 Vpr, a protein carried in the virion, is important for efficient infection of primary macrophages. Vpr is also a determinant of the pathogenic effects of HIV-1 in vivo A number of cellular proteins that interact with Vpr have been identified. So far, it has not been possible to associate these proteins with altered viral replication in macrophages or to explain why Vpr is carried in the virus particle. Here, we show that Vpr mitigates the antiviral effects of REAF, a protein highly expressed in primary macrophages and one that inhibits virus replication during reverse transcription. REAF is degraded by Vpr within 30 min of virus entry in a manner dependent on the nuclear localization of Vpr and its interaction with the cell's protein degradation machinery.


Assuntos
Antivirais/metabolismo , HIV-1/metabolismo , Replicação Viral/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Produtos do Gene vpr/metabolismo , Produtos do Gene vpr/fisiologia , Células HEK293 , Infecções por HIV/virologia , HIV-1/fisiologia , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/metabolismo , Cultura Primária de Células , Ubiquitina-Proteína Ligases/metabolismo , Vírion/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
4.
Nucleic Acids Res ; 46(16): 8454-8470, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30085096

RESUMO

Long interspersed element-1 (LINE-1, L1) composes ∼17% of the human genome. However, genetic interactions between L1 and human immunodeficiency virus type 1 (HIV-1) remain poorly understood. In this study, we found that HIV-1 suppresses L1 retrotransposition. Notably, HIV-1 Vpr strongly inhibited retrotransposition without inhibiting L1 promoter activity. Since Vpr is known to regulate host cell cycle, we examined the possibility whether Vpr suppresses L1 retrotransposition in a cell cycle dependent manner. We showed that the inhibitory effect of a mutant Vpr (H71R), which is unable to arrest the cell cycle, was significantly relieved compared with that of wild-type Vpr, suggesting that Vpr suppresses L1 mobility in a cell cycle dependent manner. Furthermore, a host cell cycle regulator p21Waf1 strongly suppressed L1 retrotransposition. The N-terminal kinase inhibitory domain (KID) of p21 was required for this inhibitory effect. Another KID-containing host cell cycle regulator p27Kip1 also strongly suppressed L1 retrotransposition. We showed that Vpr and p21 coimmunoprecipitated with L1 ORF2p and they suppressed the L1 reverse transcriptase activity in LEAP assay, suggesting that Vpr and p21 inhibit ORF2p-mediated reverse transcription. Altogether, our results suggest that viral and host cell cycle regulatory machinery limit L1 mobility in cultured cells.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/fisiologia , HIV-1/fisiologia , Elementos Nucleotídeos Longos e Dispersos/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Ciclo Celular , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p27/fisiologia , Endonucleases/metabolismo , Genes Reporter , Genes vpr , HIV-1/genética , Humanos , Domínios Proteicos , Proteínas/metabolismo , Interferência de RNA , DNA Polimerase Dirigida por RNA/metabolismo , Transcrição Gênica , Vírion/metabolismo
5.
Retrovirology ; 15(1): 8, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29338752

RESUMO

BACKGROUND: Viral protein R (Vpr) is an accessory protein of HIV-1, which is potentially involved in the infection of macrophages and the induction of the ataxia-telangiectasia and Rad3-related protein (ATR)-mediated DNA damage response (DDR). It was recently proposed that the SLX4 complex of structure-specific endonuclease is involved in Vpr-induced DDR, which implies that aberrant DNA structures are responsible for this phenomenon. However, the mechanism by which Vpr alters the DNA structures remains unclear. RESULTS: We found that Vpr unwinds double-stranded DNA (dsDNA) and invokes the loading of RPA70, which is a single-stranded DNA-binding subunit of RPA that activates the ATR-dependent DDR. We demonstrated that Vpr influenced RPA70 to accumulate in the corresponding region utilizing the LacO/LacR system, in which Vpr can be tethered to the LacO locus. Interestingly, RPA70 recruitment required chromatin remodelling via Vpr-mediated ubiquitination of histone H2B. On the contrary, Q65R mutant of Vpr, which lacks ubiquitination activity, was deficient in both chromatin remodelling and RPA70 loading on to the chromatin. Moreover, Vpr-induced unwinding of dsDNA coincidently resulted in the accumulation of negatively supercoiled DNA and covalent complexes of topoisomerase 1 and DNA, which caused DNA double-strand breaks (DSBs) and DSB-directed integration of proviral DNA. Lastly, we noted the dependence of Vpr-promoted HIV-1 infection in resting macrophages on topoisomerase 1. CONCLUSIONS: The findings of this study indicate that Vpr-induced structural alteration of DNA is a primary event that triggers both DDR and DSB, which ultimately contributes to HIV-1 infection.


Assuntos
Dano ao DNA/fisiologia , DNA Topoisomerases Tipo I/metabolismo , DNA Super-Helicoidal/metabolismo , HIV-1/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Linhagem Celular , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo I/genética , Regulação para Baixo , Histonas/metabolismo , Humanos , Macrófagos/virologia , Modelos Biológicos , Proteína de Replicação A/metabolismo , Sumoilação , Ubiquitinação , Integração Viral
6.
PLoS Pathog ; 9(12): e1003812, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339781

RESUMO

The precise role of viral protein R (Vpr), an HIV-1-encoded protein, during HIV-1 infection and its contribution to the development of AIDS remain unclear. Previous reports have shown that Vpr has the ability to cause G2 cell cycle arrest and apoptosis in HIV-1-infected cells in vitro. In addition, vpr is highly conserved in transmitted/founder HIV-1s and in all primate lentiviruses, which are evolutionarily related to HIV-1. Although these findings suggest an important role of Vpr in HIV-1 pathogenesis, its direct evidence in vivo has not been shown. Here, by using a human hematopoietic stem cell-transplanted humanized mouse model, we demonstrated that Vpr causes G2 cell cycle arrest and apoptosis predominantly in proliferating CCR5(+) CD4(+) T cells, which mainly consist of regulatory CD4(+) T cells (Tregs), resulting in Treg depletion and enhanced virus production during acute infection. The Vpr-dependent enhancement of virus replication and Treg depletion is observed in CCR5-tropic but not CXCR4-tropic HIV-1-infected mice, suggesting that these effects are dependent on the coreceptor usage by HIV-1. Immune activation was observed in CCR5-tropic wild-type but not in vpr-deficient HIV-1-infected humanized mice. When humanized mice were treated with denileukin diftitox (DD), to deplete Tregs, DD-treated humanized mice showed massive activation/proliferation of memory T cells compared to the untreated group. This activation/proliferation enhanced CCR5 expression in memory CD4(+) T cells and rendered them more susceptible to CCR5-tropic wild-type HIV-1 infection than to vpr-deficient virus. Taken together, these results suggest that Vpr takes advantage of proliferating CCR5(+) CD4(+) T cells for enhancing viremia of CCR5-tropic HIV-1. Because Tregs exist in a higher cycling state than other T cell subsets, Tregs appear to be more vulnerable to exploitation by Vpr during acute HIV-1 infection.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/fisiologia , Replicação Viral , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Doença Aguda , Animais , Animais Recém-Nascidos , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Viremia/imunologia
7.
Yakugaku Zasshi ; 133(10): 1103-11, 2013.
Artigo em Japonês | MEDLINE | ID: mdl-24088354

RESUMO

Human immunodeficiency virus (HIV) has no more than nine genes expressing approximately twenty proteins. When T lymphocytes and macrophages in a body are infected with HIV, these proteins work in turn at specific time and location, causing acquired immunodeficiency syndrome (AIDS), a disease yet to be overcome. Since the elucidation of molecular mechanism of HIV proteins should lead to remedy of AIDS, the author has been engaged in the study of HIV protein in the past decade. Described herein are viral protein X (Vpx), uniquely found in HIV-2, and its homologous protein Vpr found both in HIV-1 and -2. We found that Vpx enhances genome nuclear import in T lymphocytes, and is critical for reverse transcription of viral RNA in macrophages. This finding on the function in macrophages corrected long-term misleading belief. Furthermore, functional region mapping of Vpx was performed. In 2011, the protein SAMHD1 was identified as the host restriction factor counteracted by Vpx, by foreign researchers. After that, our independent study demonstrated the presence of SAMHD1-independent functions of Vpx in T cells, in addition to its SAMHD1-dependent functions in macrophages. Another topic of this review is Gag protein. Recently, it has reported by overseas researchers that PI(4,5)P2 (one of phosphoinositide) regulates Pr55(Gag) localization and assembly. In this study, we determined the binding affinity between N-terminal MA domain of Pr55(Gag) and various phosphoinositide derivatives using surface plasmon resonance. The results suggested that both negatively charged inositol phosphates and hydrophobic acyl chain are required for the MA binding.


Assuntos
HIV-1/genética , HIV-2/genética , Fosfatidilinositóis/fisiologia , Precursores de Proteínas/metabolismo , Transporte Proteico , Proteínas Virais Reguladoras e Acessórias , Produtos do Gene vpr do Vírus da Imunodeficiência Humana , Síndrome de Imunodeficiência Adquirida/virologia , Transporte Ativo do Núcleo Celular , Descoberta de Drogas , Genoma Viral , Macrófagos/virologia , Terapia de Alvo Molecular , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA Viral/genética , Transcrição Reversa , Proteína 1 com Domínio SAM e Domínio HD , Ressonância de Plasmônio de Superfície , Linfócitos T/virologia , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia
8.
Bing Du Xue Bao ; 29(1): 44-50, 2013 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-23547379

RESUMO

Vpr, an auxiliary protein of HIV-1(Human immunodeficiency virus type 1), exerts important functions to promote viral replication and AIDS progression. In this study, we performed a yeast two-hybrid screening assay using human cDNA library to further investigate the molecular mechanism of various functions of Vpr RelB, a key protein in NF-kappaB signaling pathway, was identified as a Vpr interaction protein by co-immunoprecipitation. Further investigations indicated that RelB not only promoted the Vpr-mediated activation of NF-kappaB reporter gene, but also enhanced the transactivation of HIV LTR. Moreover, the results showed that RelB promoted Vpr-induced cell cycle G2/M arrest. Collectively, these results indicated that RelB might interact with Vpr and regulate its transcriptional activation and cell cycle arrest.


Assuntos
Pontos de Checagem do Ciclo Celular , Divisão Celular , Fase G2 , Fator de Transcrição RelB/fisiologia , Ativação Transcricional , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Repetição Terminal Longa de HIV , Células HeLa , Humanos , NF-kappa B/genética
9.
J Neuroinflammation ; 9: 138, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22727020

RESUMO

BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) induces neuronal dysfunction through host cellular factors and viral proteins including viral protein R (Vpr) released from infected macrophages/microglia. Vpr is important for infection of terminally differentiated cells such as macrophages. The objective of this study was to assess the effect of Vpr in the context of infectious virus particles on neuronal death through proinflammatory cytokines released from macrophages. METHODS: Monocyte-derived macrophages (MDM) were infected with either HIV-1 wild type (HIV-1wt), Vpr deleted mutant (HIV-1∆Vpr) or mock. Cell lysates and culture supernatants from MDMs were analyzed for the expression and release of proinflammatory cytokines by quantitative reverse transcription-PCR and enzyme-linked immunosorbent assay respectively. Mitogen-activated protein kinases (MAPK) were analyzed in activated MDMs by western blots. Further, the effect of Vpr on neuronal apoptosis was examined using primary neurons exposed to culture supernatants from HIV-1wt, HIV-1∆Vpr or mock-infected MDMs by Annexin-V staining, MTT and Caspase - Glo® 3/7 assays. The role of interleukin (IL)-1ß, IL-8 and tumor necrosis factor (TNF)-α on neuronal apoptosis was also evaluated in the presence or absence of neutralizing antibodies against these cytokines. RESULTS: HIV-1∆Vpr-infected MDMs exhibited reduced infection over time and specifically a significant downregulation of IL-1ß, IL-8 and TNF-α at the transcriptional and/or protein levels compared to HIV-1wt-infected cultures. This downregulation was due to impaired activation of p38 and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) in HIV-1∆Vpr-infected MDMs. The association of SAPK/JNK and p38 to IL-1ß and IL-8 production was confirmed by blocking MAPKs that prevented the elevation of IL-1ß and IL-8 in HIV-1wt more than in HIV-1∆Vpr-infected cultures. Supernatants from HIV-1∆Vpr-infected MDMs containing lower concentrations of IL-1ß, IL-8 and TNF-α as well as viral proteins showed a reduced neurotoxicity compared to HIV-1wt-infected MDM supernatants. Reduction of neuronal death in the presence of anti-IL-1ß and anti-IL-8 antibodies only in HIV-1wt-infected culture implies that the effect of Vpr on neuronal death is in part mediated through released proinflammatory factors. CONCLUSION: Collectively, these results demonstrate the ability of HIV-1∆Vpr to restrict neuronal apoptosis through dysregulation of multiple proinflammatory cytokines in the infected target cells either directly or indirectly by suppressing viral replication.


Assuntos
Apoptose/fisiologia , Redes Reguladoras de Genes/fisiologia , Infecções por HIV/metabolismo , Mediadores da Inflamação/fisiologia , Neurônios/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Células Cultivadas , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/virologia , Humanos , Mediadores da Inflamação/administração & dosagem , Interleucina-8/antagonistas & inibidores , Interleucina-8/biossíntese , Neurônios/patologia , Neurônios/virologia , Inativação de Vírus , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/administração & dosagem
10.
PLoS One ; 7(1): e30939, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22292079

RESUMO

BACKGROUND: The HIV1 protein Vpr assembles with and acts through an ubiquitin ligase complex that includes DDB1 and cullin 4 (CRL4) to cause G2 cell cycle arrest and to promote degradation of both uracil DNA glycosylase 2 (UNG2) and single-strand selective mono-functional uracil DNA glycosylase 1 (SMUG1). DCAF1, an adaptor protein, is required for Vpr-mediated G2 arrest through the ubiquitin ligase complex. In work described here, we used UNG2 as a model substrate to study how Vpr acts through the ubiquitin ligase complex. We examined whether DCAF1 is essential for Vpr-mediated degradation of UNG2 and SMUG1. We further investigated whether Vpr is required for recruiting substrates to the ubiquitin ligase or acts to enhance its function and whether this parallels Vpr-mediated G2 arrest. METHODOLOGY/PRINCIPAL FINDINGS: We found that DCAF1 plays an important role in Vpr-independent UNG2 and SMUG1 depletion. UNG2 assembled with the ubiquitin ligase complex in the absence of Vpr, but Vpr enhanced this interaction. Further, Vpr-mediated enhancement of UNG2 degradation correlated with low Vpr expression levels. Vpr concentrations exceeding a threshold blocked UNG2 depletion and enhanced its accumulation in the cell nucleus. A similar dose-dependent trend was seen for Vpr-mediated cell cycle arrest. CONCLUSIONS/SIGNIFICANCE: This work identifies UNG2 and SMUG1 as novel targets for CRL4(DCAF1)-mediated degradation. It further shows that Vpr enhances rather than enables the interaction between UNG2 and the ubiquitin ligase. Vpr augments CRL4(DCAF1)-mediated UNG2 degradation at low concentrations but antagonizes it at high concentrations, allowing nuclear accumulation of UNG2. Further, the protein that is targeted to cause G2 arrest behaves much like UNG2. Our findings provide the basis for determining whether the CRL4(DCAF1) complex is alone responsible for cell cycle-dependent UNG2 turnover and will also aid in establishing conditions necessary for the identification of additional targets of Vpr-enhanced degradation.


Assuntos
Proteínas de Transporte/fisiologia , DNA Glicosilases/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Transporte Ativo do Núcleo Celular/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/patologia , HIV-1/genética , Humanos , Modelos Biológicos , Processamento de Proteína Pós-Traducional/genética , Proteínas Serina-Treonina Quinases , Proteólise , Distribuição Tecidual/genética , Ubiquitina-Proteína Ligases , Regulação para Cima/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
11.
J Neuroimmune Pharmacol ; 6(2): 216-29, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21318276

RESUMO

Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) is a multifunctional viral protein that plays important role at multiple stages of the HIV-1 viral life cycle. Although the molecular mechanisms underlying these activities are subject of ongoing investigations, overall, these activities have been linked to promotion of viral replication and impairment of anti-HIV immunity. Importantly, functional defects of Vpr have been correlated with slow disease progression of HIV-infected patients. Vpr is required for efficient viral replication in non-dividing cells such as macrophages, and it promotes, to some extent, viral replication in proliferating CD4+ T cells. The specific activities of Vpr include modulation of fidelity of viral reverse transcription, nuclear import of the HIV-1 pre-integration complex, transactivation of the HIV-1 LTR promoter, induction of cell cycle G2 arrest and cell death via apoptosis. In this review, we focus on description of the cellular proteins that specifically interact with Vpr and discuss their significance with regard to the known Vpr activities at each step of the viral life cycle in proliferating and non-proliferating cells.


Assuntos
HIV-1/crescimento & desenvolvimento , HIV-1/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Estágios do Ciclo de Vida/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Animais , HIV-1/fisiologia , Humanos , Replicação Viral/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia
12.
Retrovirology ; 7: 59, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20609246

RESUMO

BACKGROUND: Cell cycle G2 arrest induced by HIV-1 Vpr is thought to benefit viral proliferation by providing an optimized cellular environment for viral replication and by skipping host immune responses. Even though Vpr-induced G2 arrest has been studied extensively, how Vpr triggers G2 arrest remains elusive. RESULTS: To examine this initiation event, we measured the Vpr effect over a single cell cycle. We found that even though Vpr stops the cell cycle at the G2/M phase, but the initiation event actually occurs in the S phase of the cell cycle. Specifically, Vpr triggers activation of Chk1 through Ser345 phosphorylation in an S phase-dependent manner. The S phase-dependent requirement of Chk1-Ser345 phosphorylation by Vpr was confirmed by siRNA gene silencing and site-directed mutagenesis. Moreover, downregulation of DNA replication licensing factors Cdt1 by siRNA significantly reduced Vpr-induced Chk1-Ser345 phosphorylation and G2 arrest. Even though hydroxyurea (HU) and ultraviolet light (UV) also induce Chk1-Ser345 phosphorylation in S phase under the same conditions, neither HU nor UV-treated cells were able to pass through S phase, whereas vpr-expressing cells completed S phase and stopped at the G2/M boundary. Furthermore, unlike HU/UV, Vpr promotes Chk1- and proteasome-mediated protein degradations of Cdc25B/C for G2 induction; in contrast, Vpr had little or no effect on Cdc25A protein degradation normally mediated by HU/UV. CONCLUSIONS: These data suggest that Vpr induces cell cycle G2 arrest through a unique molecular mechanism that regulates host cell cycle regulation in an S-phase dependent fashion.


Assuntos
Divisão Celular , Fase G2 , HIV-1/patogenicidade , Fase S , Fatores de Virulência/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem , Inativação Gênica , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas Quinases/metabolismo , Fosfatases cdc25/metabolismo
13.
PLoS One ; 5(7): e11466, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20628645

RESUMO

Several unique biological features of HIV-1 Vpr make it a potentially powerful agent for anti-cancer therapy. First, Vpr inhibits cell proliferation by induction of cell cycle G2 arrest. Second, it induces apoptosis through multiple mechanisms, which could be significant as it may be able to overcome apoptotic resistance exhibited by many cancerous cells, and, finally, Vpr selectively kills fast growing cells in a p53-independent manner. To demonstrate the potential utility of Vpr as an anti-cancer agent, we carried out proof-of-concept studies in vitro and in vivo. Results of our preliminary studies demonstrated that Vpr induces cell cycle G2 arrest and apoptosis in a variety of cancer types. Moreover, the same Vpr effects could also be detected in some cancer cells that are resistant to anti-cancer drugs such as doxorubicin (DOX). To further illustrate the potential value of Vpr in tumor growth inhibition, we adopted a DOX-resistant neuroblastoma model by injecting SK-N-SH cells into C57BL/6N and C57BL/6J-scid/scid mice. We hypothesized that Vpr is able to block cell proliferation and induce apoptosis regardless of the drug resistance status of the tumors. Indeed, production of Vpr via adenoviral delivery to neuroblastoma cells caused G2 arrest and apoptosis in both drug naïve and DOX-resistant cells. In addition, pre-infection or intratumoral injection of vpr-expressing adenoviral particles into neuroblastoma tumors in SCID mice markedly inhibited tumor growth. Therefore, Vpr could possibly be used as a supplemental viral therapeutic agent for selective inhibition of tumor growth in anti-cancer therapy especially when other therapies stop working.


Assuntos
Doxorrubicina/uso terapêutico , Neuroblastoma/tratamento farmacológico , Neuroblastoma/terapia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Adenoviridae/genética , Animais , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Vetores Genéticos/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
14.
Retrovirology ; 7: 34, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20380698

RESUMO

The human immunodeficiency virus-1 (HIV-1) is a member of the lentivirus genus. The virus does not rely exclusively on the host cell machinery, but also on viral proteins that act as molecular switches during the viral life cycle which play significant functions in viral pathogenesis, notably by modulating cell signaling. The role of HIV-1 proteins (Nef, Tat, Vpr, and gp120) in modulating macrophage signaling has been recently unveiled. Accessory, regulatory, and structural HIV-1 proteins interact with signaling pathways in infected macrophages. In addition, exogenous Nef, Tat, Vpr, and gp120 proteins have been detected in the serum of HIV-1 infected patients. Possibly, these proteins are released by infected/apoptotic cells. Exogenous accessory regulatory HIV-1 proteins are able to enter macrophages and modulate cellular machineries including those that affect viral transcription. Furthermore HIV-1 proteins, e.g., gp120, may exert their effects by interacting with cell surface membrane receptors, especially chemokine co-receptors. By activating the signaling pathways such as NF-kappaB, MAP kinase (MAPK) and JAK/STAT, HIV-1 proteins promote viral replication by stimulating transcription from the long terminal repeat (LTR) in infected macrophages; they are also involved in macrophage-mediated bystander T cell apoptosis. The role of HIV-1 proteins in the modulation of macrophage signaling will be discussed in regard to the formation of viral reservoirs and macrophage-mediated T cell apoptosis during HIV-1 infection.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/patogenicidade , Ativação de Macrófagos , Macrófagos/imunologia , Transdução de Sinais , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/fisiologia , Humanos , Fatores de Virulência/imunologia , Fatores de Virulência/fisiologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia
15.
Retrovirology ; 7: 35, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20380700

RESUMO

HIV viruses encode a set of accessory proteins, which are important determinants of virulence due to their ability to manipulate the host cell physiology for the benefit of the virus. Although these viral proteins are dispensable for viral growth in many in vitro cell culture systems, they influence the efficiency of viral replication in certain cell types. Macrophages are early targets of HIV infection which play a major role in viral dissemination and persistence in the organism. This review focuses on two HIV accessory proteins whose functions might be more specifically related to macrophage infection: Vpr, which is conserved across primate lentiviruses including HIV-1 and HIV-2, and Vpx, a protein genetically related to Vpr, which is unique to HIV-2 and a subset of simian lentiviruses. Recent studies suggest that both Vpr and Vpx exploit the host ubiquitination machinery in order to inactivate specific cellular proteins. We review here why it remains difficult to decipher the role of Vpr in macrophage infection by HIV-1 and how recent data underscore the ability of Vpx to antagonize a restriction factor which counteracts synthesis of viral DNA in monocytic cells.


Assuntos
HIV/patogenicidade , Macrófagos/imunologia , Vírus da Imunodeficiência Símia/patogenicidade , Proteínas Virais Reguladoras e Acessórias/fisiologia , Fatores de Virulência/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Animais , HIV/imunologia , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/virologia , Primatas , Ubiquitinação , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/imunologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/imunologia
16.
Blood ; 115(20): 4021-9, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20220118

RESUMO

The long-term expression and the ability of a therapeutic gene to confer survival advantage to transduced cells are mandatory requirements for successful anti-HIV gene therapy. In this context, we developed lentiviral vectors (LVs) expressing the F12-viral infectivity factor (Vif) derivative Chim3. We recently showed that Chim3 inhibits HIV-1 replication in primary cells by both blocking the accumulation of retrotranscripts, independently of either human APOBEC3G (hA3G) or Vif, and by preserving the antiviral function of hA3G. These results were predictive of long-lasting survival of Chim3(+) cells after HIV-1 infection. Furthermore, Vif, like Vpr, deregulates cell-cycle progression by inducing a delay in G(2) phase. Thus, the aim of this study was to investigate the role of Chim3 on both cell survival and cell-cycle regulation after HIV-1 infection. Here, we provide evidence that infected Chim3(+) T cells prevail over either mock- or empty-LV engineered cells, show reduced G(2) accumulation, and, as a consequence, ultimately extend their lifespan. Based on these findings, Chim3 rightly belongs to the most efficacious class of antiviral genes. In conclusion, Chim3 usage in anti-HIV gene therapy based on hematopoietic stem cell (HSC) modification has to be considered as a promising therapeutic intervention to eventually cope with HIV-1 infection.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , DNA Viral/genética , Fase G2/fisiologia , Terapia Genética , HIV-1/fisiologia , Integração Viral , Produtos do Gene vif do Vírus da Imunodeficiência Humana/fisiologia , Southern Blotting , Linfócitos T CD4-Positivos/virologia , Sobrevivência Celular , Células Cultivadas , DNA Viral/metabolismo , Células-Tronco Hematopoéticas , Humanos , Imunoprecipitação , Replicação Viral , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia
17.
Rev Med Virol ; 20(2): 68-76, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20069611

RESUMO

Primate immunodeficiency viruses encode viral proteins that are uniquely auxiliary to their growth in host cells. Of these accessory proteins, those designated Vpr and Vpx are least well understood with respect to their functions in the viral replication cycle. Moreover, their assigned roles based on the results in published studies remain controversial. This review summarises current knowledge on human immunodeficiency virus (HIV) Vpr/Vpx proteins, and discusses their functional activities during the viral life cycle in macrophages and T lymphocytes, the two major target cells of HIV infection.


Assuntos
HIV/patogenicidade , Proteínas Virais Reguladoras e Acessórias/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Linfócitos T CD4-Positivos/virologia , Humanos , Macrófagos/virologia
18.
FASEB J ; 24(6): 1799-812, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20097875

RESUMO

MicroRNAs (miRNAs) are small noncoding RNA molecules, which are known to regulate gene expression in physiological and pathological conditions. miRNA profiling was performed using brain tissue from patients with HIV encephalitis (HIVE), a neuroinflammatory/degenerative disorder caused by HIV infection of the brain. Microarray analysis showed differential expression of multiple miRNAs in HIVE compared to control brains. Target prediction and gene ontology enrichment analysis disclosed targeting of several gene families/biological processes by differentially expressed miRNAs (DEMs), with cell death-related genes, including caspase-6, showing a bias toward down-regulated DEMs. Consistent with the miRNA data, HIVE brains exhibited higher levels of caspase-6 transcripts compared with control patients. Immunohistochemical analysis showed localization of the cleaved form of caspase-6 in astrocytes in HIVE brain sections. Exposure of cultured human primary astrocytes to HIV viral protein R (Vpr) induced p53 up-regulation, loss of mitochondrial membrane potential, and caspase-6 activation followed by cell injury. Transgenic mice, expressing Vpr in microglial cells, demonstrated astrocyte apoptosis in brain, which was associated with caspase-6 activation and neurobehavioral abnormalities. Overall, these data point to previously unrecognized alterations in miRNA profile in the brain during HIV infection, which contribute to cell death through dysregulation of cell death machinery.


Assuntos
Complexo AIDS Demência/etiologia , Astrócitos/citologia , Encéfalo/metabolismo , Caspase 6/metabolismo , Infecções por HIV/complicações , MicroRNAs/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Adulto , Animais , Astrócitos/metabolismo , Biomarcadores/metabolismo , Western Blotting , Encéfalo/citologia , Sinalização do Cálcio , Caspase 6/genética , Sobrevivência Celular , Feminino , Feto/citologia , Feto/metabolismo , Imunofluorescência , Perfilação da Expressão Gênica , Infecções por HIV/genética , HIV-1 , Humanos , Técnicas Imunoenzimáticas , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
J Virol ; 84(7): 3320-30, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20089662

RESUMO

HIV-1 viral protein R (Vpr) induces cell cycle arrest at the G(2)/M phase by a mechanism involving the activation of the DNA damage sensor ATR. We and others recently showed that Vpr performs this function by subverting the activity of the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase. Vpr could thus act as a connector between the E3 ligase and an unknown cellular factor whose ubiquitination would induce G(2) arrest. While attractive, this model is based solely on the indirect observation that some mutants of Vpr retain their interaction with the E3 ligase but fail to induce G(2) arrest. Using a tandem affinity purification approach, we observed that Vpr interacts with ubiquitinated cellular proteins and that this association requires the recruitment of an active E3 ligase given that the depletion of VPRBP by RNA interference or the overexpression of a dominant negative mutant of CUL4A decreased this association. Importantly, G(2)-arrest-defective mutants of Vpr in the C-terminal putative substrate-interacting domain displayed a decreased association with ubiquitinated proteins. We also found that the inhibition of proteasomal activity increased this association and that the ubiquitin chains were at least in part constituted of classical K48 linkages. Interestingly, the inhibition of K48 polyubiquitination specifically impaired the Vpr-induced phosphorylation of H2AX, an early target of ATR, but did not affect UV-induced H2AX phosphorylation. Overall, our results provide direct evidence that the association of Vpr with the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase induces the K48-linked polyubiquitination of as-yet-unknown cellular proteins, resulting in their proteasomal degradation and ultimately leading to the activation of ATR and G(2) arrest.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Fase G2 , Poliubiquitina/química , Complexo de Endopeptidases do Proteassoma/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Ubiquitina/química , Ubiquitinação , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Transporte/metabolismo , Linhagem Celular , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Humanos , Fosforilação , Ubiquitina-Proteína Ligases/fisiologia
20.
Curr Top Microbiol Immunol ; 339: 177-200, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20012529

RESUMO

Like most viral regulatory proteins, HIV-1 Vpr and homologous proteins from primate lentiviruses are small and multifunctional. They are associated with a plethora of effects and functions, including induction of cell cycle arrest in the G(2) phase, induction of apoptosis, transactivation, enhancement of the fidelity of reverse transcription, and nuclear import of viral DNA in macrophages and other nondividing cells. This review focuses on the cellular proteins that have been reported to interact with Vpr and their significance with respect to the known functions and effects of Vpr on cells and on viral replication.


Assuntos
Interações Hospedeiro-Patógeno , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Apoptose , Ciclo Celular , Reparo do DNA , Humanos , Complexo de Endopeptidases do Proteassoma/fisiologia , Ubiquitinação , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...